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STATISTICAL PROPERTIES OF LORENTZ LATTICE GASES

P.-M. Binder
Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545
and

Applied Physics Section, Yale University, New Haven, CT 06520

In this paper we present new results for the long-time tails and mean-square displace-
ment evolution for several deterministic and probabilistic models of the Lorentz gas in
a square lattice. The simulations give diffusion coefficients which agree with analytical
resuits from the corresponding Boltzmann equation. For long times, abnormal diffusion
is observed for the deterministic models only. This is probably due to recurring trajecto-
ries. The velocity autovcnrrelation function shows exponents which vary between -1 and -2

depending on the particle-scatierer collision mode! used.

1. Introduction

This paper contains new results, moatly numerical, on the diffusion and long-time tails
of several iattice models of the Lorentz gas. These models are very simiiar to those [ pre-
sented in a previous paper!, althougn here I will treat both deterministic and probabilistic
collision models ir a square lattice only. These models are loosely based on recent devel-
opments in lattice gases®3. The main features of these models are that time and space are
discrete, and that particles and sca‘terers occupy no volume.

My results are as foliows. (1) Numerical simul stions for the mean-square displacement
(m.s.d), < Ar? > versus time, yield diffusion coefficients which agree well with analytical
results at the Boltzmann level (low-density) up to scatterer concentrations of 0.3. (2) For
the deterministic collision models only, the m.s.d. becomes constant after long times, of the

order of several hunded mean-frec paths. We present numerical evidence to link this resuit
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to recurring trajectories. (3) I present results for the velocity autocorrelation function,
C(t) =< v(0)v(t) >. This quantity exhibits a power- law decay (long-time tails) with the
power varying between -1 for deterministic rules and -2 for random, uniform scattering.
These results are valid for just a few mean-free paths, before statistical noise takes over.

In the remainder of this section I will introduce the Lorentz model, and a few basic
results. In section 2 I will review recent work on lattice models with static disorder,
including the models studied in this paper. In sections 3 and 4 I present the results for
diffusive behavior and long-time tails respectively. A discussion in section 5 concludes this
paper.

The Lorentz gas, in which a single particle moves through an array of randomly placed
fixed disk scatterers* was originally proposed by Lorentz a# a model of electiron motion in
a solid. It has turned out to be, along with Ehrenfest’s wind-tree model®, a similar model
with diamond-shaped scatterers, an important test case in kinetic theory. For one thing,
the low-density description is given by a linear Boltzmann equation, which has allowed for
explicit analytical solutions. See, for example, Reference (6) for a review. Also, the high-
density diffusion coefficient has been worked out, at least for the wind-tree model’. Another
aspect of interest in this problem is the C(t) function defined above. It has been shown by
momentum conservation arguments® that this quantity should go as t%/2 for d-dimensional
gases. The Lorentz gas dozs not conserve momentum, and Ernst and Weyland® showed
that for this gas C(tj ~ t~(4+1)/2, There is strong disagreement in two dimensions between
this result and computer simulations!®. Although at least two poesible explanations have
been proposed, one in terms of slow convergence to asymptotic behavinr’! and the other
in terms of a crossover near the percolation density of scatterers:?, this is still an open

problem. [ will now review recent work un Lorentz-like models in lattices.

3. The Lorentz gas: lattice modeis

This section begins with two warnings: the survey may not be complete, and there
will be a lot of emphasis on my own models- mainly because the results in the following
two sections are based on these models.

Gates and others!?-18

have studied certain properties of wind-tree models in a lattice.
Each scatterer effectively occupies four lattice sites. In References (13-14), Gates proved
some existence theorems for the diffusion coefficient in these models. One cf the models

in Reference (14), proposed by Kac, is very similar to my models (it has point scatterers),
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except that his particles always turn in the same direction. Reference (15) models a kind
of multiple collision studied earlier in Reference (7), by placing parallel mirrors in a lattice.

In a paper mostly about one-dimensional stochastic Lorentz gases, van Beijeren® sugz-
gests two-dimensional stochastic Lorentz gases on a lattice which are a generalization of
some of the models I study in the next two sections. Apparently, no results existed at
the time for these models. Finally, Ernst and others!!!? have studied hopping models in a
lattice with random excluded sites. Although this problem differs a lot from the Lorentz
gas (for example, the concept of mean-free path makes no sense), it still has the effect
of static disordered structures affecting particle motion. These papers present very inter-
esting results, especially for the velocity autocorrelation function. I will now explain the
models in Reference (1), along with some basic results, as well as the models studied in
the present paper.

Three models were proposed in that paper. We will call them square lattice (S),
triangular, time-alternating (TTA) and triangular, time-independent (TTI). The models
in the present paper are all variations on (S). These models have two common features:
they are discrete in time and they are formulated in a regular plane-filling lattice (square
or triangular). For simplicity, we will take the edge length, time step and velocity of the
particle to be equal to one, so that all distributions, diffusion coefficients and recurrence
times come out dimensionless. Note that with this simplification the mean free time and
the mean free path are the same. In the first model, the particle moves between the nodes
of a square grid at unit speed. The direction of the particle only changes when it hits a
scatterer (randomly placed at the nodes of the grid). It does so by +90°, according to the
parity of the time step.

In the other two models, the particle moves in a triangular grid, so that at each node
6 directions - differing by factors of 60°- are possible. Unless a scutterer is present, the
particle will go through a node¢ without change in velocity. In the TTA case, the particle
will undergo # +60° change in direction, according to the parity of the time step. In the
TTI case, a s:atterer will always cause a 60° deviation in the same direction, so, after 6
collisions, the particle will have traveled in every posesible direction.

In all mo lels I used a parallelogram-shaped domain with helical boundary conditions,
to ensure that in the absence of scatterers the particle would show some semblance of
ergodic behavior. A typical trajectory, obtained in a CAM-6 machine'® appears in Figure
1.



I studied three physical properties of these models: (a) the dependence of mean free
path on the density of scatterers, which agrees with analytical results'’; (b) the long-time
displacement distribution, which is consistent with analytical results'®, and (c) the diffusion
coefficient. Although the time dependence of the mean-square displacement shows that this
coefficient is well defined, at least for short times, its dependence on density of scatterers
disagrees somewhat with analytical results for the Ehrehfest wind-tree model. This is to
be expected from the nature of our model, which does not restrict particle motion at high
density of scatterers.

I also studied the state-transition graphs of the gas viewed as a discrete dynamical
system: these graphs share to a large extent the properties of chaotic!® and random?
discrete maps for the distribution of limit cycles :

(a) Startiag from an initial condition picked at random, there is a uniform probability
distribution for the length of cycles.

(b) The average length of a cycle that starts from an initial condition picked at random
is 2, where m is the total number of states.

(¢) The average number of cycles is equal to In(m).

For the Lorentz gas we see that the property (b) holds for all models, property (a)
holds fairly well (especially for the TTI model), and property (c) is in fair agreement with
the behavior of a chaotic map, and at high scatterer densities agrees well with the result
for a random mapping. Although somewhat indirect, these results are consistent with the
analytical and numerical results that the Lorentz gas exhibits chaotic behavior *'.

In the present paper the (S) model will be called the "deteministic” model, and a
version of (S) in which the direction of motion changes at random rather than by the
parity of the time step will be called " probabilistic”.

3. Diffusive behavior

This section contains results of simulations of both the deterministic and probabilis-
tic models. The scatterers were generated along the trajectory of a single particle with
probabiiity ¢ (c=concentration), keeping track ol previously visited sites. Only trajectories
which after 5000 time steps had a number of scatterers agreeing within 5% with the density
were kept for averaging. Figure 2 shows the m.s.d., < (r(0) — r(t))? > versus time for (a)
the deterministic model and (b) the probabilistic model, for ¢=0.3. From this plot, the
diffusion coefficient can be computed hy Einstein’s equation??,

< Ar? >= 4Dt 1
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Figure 3 shows the numerical values of D for 0.05 < ¢ < 0.3, which compare well with
analytical results for the Boltzmann equation. At low densities, for both the deterministic

and probabilistic models, the distribution of particles is governed by

filn+ pi,t +1) = (1 = ¢) fi(n,t) + %[f.’-x(n.t) + fit1(n,t)] 2

where /; is the distribution of particles moving with velocity j (the cyclic index j varies
between 0 and 3; for example, 0 is the +x direction), 1. is a node label, p; is a unit vector

in direction i and c is the concentration. Upon substituting the mode expressions
fi= Aje-'(c-n;—w(t)) 3

one gets four equations for the amplitudes A;. After linearizing and solving for the eigen-

values, one gets

12 2
=—¢'=D 4
w=omg q

which is the straight line in Figure 3. A complete dcrivation for arbitrary collision rules,
of which the ones here are a special case, will be presented elsewhere.

The mcat striking difference between Figures 2(a) and 2(b) is the fact that < Ar? >
stays at a constant value for long enough times. This appears to be caused by limit cycles
in the particle trajectory. These cycles are only possible in the deterministic model. The
simplest configuration of scatterers that could support such a trajectory is four scatterers
at the vertices of a 2x2 square. I plan to use distributions of these limit cycles, such as
Figure 4, to explain the time it takes for this phenomenon to appear and the final value
of < Ar? >. This is an extreme case of the abnorme.l diffusion studied in 7, and was first
predicted by J.Machta??,

4. Velocity autocorrelation functions

The simulations here are very similar to those in the previous section, 2xcept that
they involve more configurations of scatterers (up to 100,000 as opposed to 5,000 for the
diffusion coefficient) and fewer time steps (up to 100).

Figure 5 shows C(t) for c=0.3 for (a) the deterministic model and (b) the probabilistic
model. Note that in the deterministic model the curve reflects the influence of the parity
of the time step, which is not the case in the probabilistic model. Figure 6 shows log
C(t) versus log t for the deterministic and probabilistic models, the upper and lower

curves respectively (c=0.2). After about 50 time steps, the statistical error beccmes very
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large. The fact that the correlation decays more slowly for the deterministic model is
to be expected. The exponents are independent of density, and appear to be -1 for the
deterministic case and about -1.7 for the probabilistic one. A similar curve for random,
uniform scattering at ¢=0.1 is shown in Figure 7. This is the only one which agrees with

the prediction C(t) ~ ¢t~2. I have at the present no analytical results for these models.

5. Discussion

This paper presents several new results for lattice models of the Lorentz gas. It extends
the diffusion calculations of Reference (1) from 20 mean- free paths to a few hundred. It
introduces probabilistic models in addition to deterministic oncs, and shows important
differences in their behavior for long times. What we observe in the deterministic model
is an extreme case of the abnormal difusion studied in Reference (7). This is caused
by recurring trajectories, which are an infinite limit of orbiting events. I show that the
recurring events are very common for this model. I also present the Boltzmann-level results
for these models, which indeed show agreement at low density of scatterers. Finally, I show
numerical results or the velocity autocorrelation function. A power law decay is indeed
obeyed, but only one of the models agrees with the theoretical exponent. Two surprising

results are the density independence and the model dependence of this exponent.
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Figure Titles

1. Recurring trajectories in a 252X251 lattice, TTA model, with reflecting boundary
conditions: 25% scatterers (length: 85089);

2. Mean-square displacement versus time: (a) deterministic model, (b) probabilistic
model, for ¢=0.3.

3. Logarithm of the diffusion coefficient vs. logarithm of the density. Straight line:
Boltzmann equation results; circles: deterministic model; squares: probabilistic model.

4. Distribution of limit cycle lengths for c=0.1.

5. C(t) for (a) deterministic model, (b) probabilistic model, ¢=0.3

6. Logarithm of C(t) versus log t. The slope of this curve giv the exponent of
the long-time tails. Upper curve: deterministic model, lower curve: probabilistic model.
Scatterer density=0.2.

7. Logarithm of C(t) versus log t for random, uniform scattering. Scatterer den-

sity =0.1.
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